Matrix3d Class
A Matrix3d is a 3x3 matrix.
- A very common use is to hold a rigid body rotation (which has no scaling or skew), but the 3x3 contents can also hold scaling and skewing.
- The matrix with 2-dimensional layout (note: a 2d array can be shown by a matrix)
equation
     \matrixXY{A}
is stored as 9 numbers in "row-major" order in a Float64Array, viz
equation
     \rowMajorMatrixXY{A}
- If the matrix inverse is known it is stored in the inverseCoffs array.
- The inverse status (unknown,inverseStored,singular) status is indicated by theinverseStateproperty.
- Construction methods that are able to trivially construct the inverse, store it immediately and note that in the inverseState.
- Constructions (e.g. createRowValues) for which the inverse is not immediately known mark the inverseState as unknown.
- Later queries for the inverse, trigger full computation if needed at that time.
- Most matrix queries are present with both "column" and "row" variants.
- Usage elsewhere in the library is typically "column" based. For example, in a Transform that carries a coordinate frame, the matrix columns are the unit vectors for the axes.
Implements
Methods
| Name | Description | |
|---|---|---|
| constructor(coffs?: Float64Array): Matrix3d | Constructor | |
| addScaledInPlace(other: Matrix3d, scale: number): void | Add scaled values from otherMatrix3d tothisMatrix3d. | |
| addScaledOuterProductInPlace(vectorU: Vector3d, vectorV: Vector3d, scale: number): void | Add scaled values from an outer product of vectors U and V. | |
| applyGivensColumnOp(i: number, j: number, c: number, s: number): void | Replace current columns Ui and Uj with (cUi + sUj) and (cUj - sUi). | |
| at(row: number, column: number): number | Return the entry at specific row and column | |
| axisOrderCrossProductsInPlace(axisOrder: AxisOrder): void | Form cross products among columns in axisOrder. | |
| clone(result?: Matrix3d): Matrix3d | Return a clone of this matrix. | |
| columnDotXYZ(columnIndex: AxisIndex, x: number, y: number, z: number): number | Dot product of an indexed column with a vector given as x,y,z | |
| columnX(result?: Vector3d): Vector3d | Return (a copy of) the X column | |
| columnXDotColumnY(): number | Return the dot product of column X with column Y | |
| columnXDotColumnZ(): number | Return the dot product of column X with column Z | |
| columnXMagnitude(): number | Return the X column magnitude | |
| columnXMagnitudeSquared(): number | Return the X column magnitude squared | |
| columnXYCrossProductMagnitude(): number | Return magnitude of columnX cross columnY. | |
| columnY(result?: Vector3d): Vector3d | Return (a copy of) the Y column | |
| columnYDotColumnZ(): number | Return the dot product of column Y with column Z | |
| columnYMagnitude(): number | Return the Y column magnitude | |
| columnYMagnitudeSquared(): number | Return the Y column magnitude squared | |
| columnZ(result?: Vector3d): Vector3d | Return (a copy of) the Z column | |
| columnZCrossVector(vector: XYZ, result?: Vector3d): Vector3d | Return the cross product of the Z column with the vector parameter. | |
| columnZMagnitude(): number | Return the Z column magnitude | |
| columnZMagnitudeSquared(): number | Return the Z column magnitude squared | |
| computeCachedInverse(useCacheIfAvailable: boolean): boolean | Compute the inverse of thisMatrix3d. | |
| conditionNumber(): number | Return an estimate of how independent the columns of thismatrix are. | |
| determinant(): number | Return the determinant of thismatrix. | |
| dotColumnX(vector: XYZ): number | Return the dot product of the vector parameter with the X column. | |
| dotColumnY(vector: XYZ): number | Return the dot product of the vector parameter with the Y column. | |
| dotColumnZ(vector: XYZ): number | Return the dot product of the vector parameter with the Z column. | |
| dotRowX(vector: XYZ): number | Return the dot product of the vector parameter with the X row. | |
| dotRowXXYZ(x: number, y: number, z: number): number | Return the dot product of the x,y,z with the X row. | |
| dotRowY(vector: XYZ): number | Return the dot product of the vector parameter with the Y row. | |
| dotRowYXYZ(x: number, y: number, z: number): number | Return the dot product of the x,y,z with the Y row. | |
| dotRowZ(vector: XYZ): number | Return the dot product of the vector parameter with the Z row. | |
| dotRowZXYZ(x: number, y: number, z: number): number | Return the dot product of the x,y,z with the Z row. | |
| factorOrthogonalScaleOrthogonal(matrixV: Matrix3d, scale: Point3d, matrixU: Matrix3d): boolean | Factor thismatrix as a productV * D * UwhereVandUare orthogonal andDis diagonal with | |
| factorPerpendicularColumns(matrixVD: Matrix3d, matrixU: Matrix3d): boolean | Factor thismatrix as a productVD * UwhereVDhas mutually perpendicular columns andUis orthogonal. | |
| factorRigidSkew(rotation: Matrix3d, skew: Matrix3d, axisOrder: AxisOrderAxisOrder.XYZ): boolean | Compute the factorization M = R*G, where R is rigid (a rotation) and G is whatever is left over (skew, scale, | |
| factorRigidWithSignedScale(result?: Matrix3d): undefined | { rigidAxes: Matrix3d, scale: number } | Test if the instance is the product of a rigid matrix and a signed scale, and return both. | |
| fastSymmetricEigenvalues(leftEigenvectors: Matrix3d, lambda: Vector3d): boolean | Factor thismatrix as a productU * lambda * UTwhereUis an orthogonal matrix andlambda | |
| freeze(): Readonly<Matrix3d> | Freeze this Matrix3d. | |
| getAxisAndAngleOfRotation(): { angle: Angle, axis: Vector3d, ok: boolean } | Compute the (unit vector) axis and angle for the rotation generated by thisMatrix3d. | |
| getColumn(columnIndex: number, result?: Vector3d): Vector3d | Return (a copy of) a column of the matrix. | |
| getRow(columnIndex: number, result?: Vector3d): Vector3d | Return a (copy of) a row of the matrix. | |
| indexedColumnWithWeight(index: number, weight: number, result?: Point4d): Point4d | Get elements of column indexpackaged as a Point4d with givenweight. | |
| inverse(result?: Matrix3d): undefined | Matrix3d | Return the inverse matrix. | |
| isAlmostEqual(other: Matrix3d, tol?: number): boolean | Test if thisandotherare within tolerance in all numeric entries. | |
| isAlmostEqualAllowZRotation(other: Matrix3d, tol?: number): boolean | Test if thisandotherhave almost equal Z column and have X and Y columns differing only by a | |
| isAlmostEqualColumn(columnIndex: AxisIndex, other: Matrix3d, tol?: number): boolean | Test if thisandotherare within tolerance in the column entries specified bycolumnIndex. | |
| isAlmostEqualColumnXYZ(columnIndex: AxisIndex, ax: number, ay: number, az: number, tol?: number): boolean | Test if column (specified by columnIndex) entries ofthisand [ax,ay,az] are within tolerance. | |
| isExactEqual(other: Matrix3d): boolean | Test for exact (bitwise) equality with other. | |
| isRigid(allowMirror: booleanfalse): boolean | Test if the matrix is a rigid matrix. | |
| isSingular(): boolean | Returns true if the matrix is singular. | |
| isSymmetric(): boolean | Test if the matrix is (very near to) symmetric | |
| makeRigid(axisOrder: AxisOrderAxisOrder.XYZ): boolean | Adjust the matrix in place to make is a rigidmatrix so that: | |
| markSingular(): void | Mark this matrix as singular. | |
| maxAbs(): number | Return the Maximum absolute value of any single entry | |
| maxDiff(other: Matrix3d): number | Return the maximum absolute difference between corresponding entries of thisandother | |
| multiplyInverse(vector: Vector3d, result?: Vector3d): undefined | Vector3d | Solve matrix * result = vectorfor an unknownresult. | |
| multiplyInverseTranspose(vector: Vector3d, result?: Vector3d): undefined | Vector3d | Solve matrixTranspose * result = vectorfor an unknownresult. | |
| multiplyInverseXYZAsPoint3d(x: number, y: number, z: number, result?: Point3d): undefined | Point3d | Multiply matrixInverse * [x,y,z]and return result asPoint3d. | |
| multiplyInverseXYZAsVector3d(x: number, y: number, z: number, result?: Vector3d): undefined | Vector3d | Multiply matrixInverse * [x,y,z]. | |
| multiplyInverseXYZW(x: number, y: number, z: number, w: number, result?: Point4d): undefined | Point4d | Multiply matrixInverse * [x,y,z]and return result as aPoint4dwith the given weight as the last coordinate. | |
| multiplyMatrixInverseMatrix(other: Matrix3d, result?: Matrix3d): undefined | Matrix3d | Multiply inverse of thismatrix timesothermatrix | |
| multiplyMatrixMatrix(other: Matrix3d, result?: Matrix3d): Matrix3d | Multiply thismatrix timesothermatrix | |
| multiplyMatrixMatrixInverse(other: Matrix3d, result?: Matrix3d): undefined | Matrix3d | Multiply thismatrix timesinverse of othermatrix | |
| multiplyMatrixMatrixTranspose(other: Matrix3d, result?: Matrix3d): Matrix3d | Multiply thismatrix times the transpose ofothermatrix | |
| multiplyMatrixTransform(other: Transform, result?: Transform): Transform | Multiply thisMatrix3d (considered to be a Transform with 0origin) timesotherTransform. | |
| multiplyMatrixTransposeMatrix(other: Matrix3d, result?: Matrix3d): Matrix3d | Multiply the transpose of thismatrix timesothermatrix | |
| multiplyPoint(point: Point3d, result?: Point3d): Point3d | Multiply matrix * point, treating the point as a column vector on the right. | |
| multiplyTransposeVector(vector: Vector3d, result?: Vector3d): Vector3d | Multiply the transpose matrix times a vector. | |
| multiplyTransposeVectorInPlace(vectorU: XYZ): void | Multiply the transpose matrix times [x,y,z] in place, i.e. | |
| multiplyTransposeXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d | Multiply the transpose matrix times column using individual numeric inputs. | |
| multiplyVector(vectorU: Readonly<WritableXYAndZ>, result?: Vector3d): Vector3d | Multiply matrix * vector, treating the vector is a column vector on the right. | |
| multiplyVectorArrayInPlace(data: XYZ[]): void | Multiply matrix * vectorin place for vector in the array, i.e. | |
| multiplyVectorInPlace(xyzData: XYZ): void | Multiply the matrix * (x,y,z) in place, i.e. | |
| multiplyXY(x: number, y: number, result?: Vector3d): Vector3d | Multiply the matrix * [x,y,0], i.e. | |
| multiplyXYZ(x: number, y: number, z: number, result?: Vector3d): Vector3d | Multiply the matrix * [x,y,z], i.e. | |
| multiplyXYZtoXYZ(xyz: XYZ, result: XYZ): XYZ | Multiply the matrix * xyz, place result in (required) return value. | |
| normalizeColumnsInPlace(originalColumnMagnitudes?: Vector3d): boolean | Normalize each column in place. | |
| normalizeRowsInPlace(originalRowMagnitudes?: Vector3d): boolean | Normalize each row in place. | |
| originPlusMatrixTimesXY(origin: XYZ, x: number, y: number, result?: Point3d): Point3d | Compute origin + the matrix * [x,y,0]. | |
| rowX(result?: Vector3d): Vector3d | Return (a copy of) the X row | |
| rowXMagnitude(): number | Return the X row magnitude | |
| rowY(result?: Vector3d): Vector3d | Return (a copy of) the Y row | |
| rowYMagnitude(): number | Return the Y row magnitude | |
| rowZ(result?: Vector3d): Vector3d | Return (a copy of) the Z row | |
| rowZMagnitude(): number | Return the Z row magnitude | |
| sameDiagonalScale(): undefined | number | If the matrix is diagonal with almost equal diagonal entries, return the first diagonal entry. | |
| scale(scale: number, result?: Matrix3d): Matrix3d | Create a Matrix3d whose values are uniformly scaled from thisMatrix3d. | |
| scaleColumns(scaleX: number, scaleY: number, scaleZ: number, result?: Matrix3d): Matrix3d | Create a Matrix3d whose columns are scaled copies of thisMatrix3d. | |
| scaleColumnsInPlace(scaleX: number, scaleY: number, scaleZ: number): void | Scale the columns of thisMatrix3d in place. | |
| scaleRows(scaleX: number, scaleY: number, scaleZ: number, result?: Matrix3d): Matrix3d | Create a Matrix3d whose rows are scaled copies of thisMatrix3d. | |
| scaleRowsInPlace(scaleX: number, scaleY: number, scaleZ: number): void | Scale the rows of thisMatrix3d in place. | |
| setAt(row: number, column: number, value: number): void | Set the entry at specific row and column | |
| setColumn(columnIndex: number, value: Vector3d): void | Set entries in one column of the matrix. | |
| setColumns(vectorX: Vector3d, vectorY: Vector3d, vectorZ?: Vector3d): void | Set all columns of the matrix. | |
| setColumnsPoint4dXYZ(vectorU: Point4d, vectorV: Point4d, vectorW: Point4d): void | Set data from xyz parts of Point4d (w part of Point4d ignored) | |
| setFrom(other: Matrix3d): void | Copy contents from the othermatrix. | |
| setFromJSON(json?: Matrix3dProps | Matrix3d): void | Copy data from various input forms to this matrix. | |
| setIdentity(): void | Set the matrix to an identity. | |
| setRow(rowIndex: number, value: Vector3d): void | Set entries in one row of the matrix. | |
| setRowValues(axx: number, axy: number, axz: number, ayx: number, ayy: number, ayz: number, azx: number, azy: number, azz: number): void | Set all entries in the matrix from call parameters appearing in row-major order. | |
| setZero(): void | Set the matrix to all zeros. | |
| sumDiagonal(): number | Return the matrix trace(sum of diagonal entries) | |
| sumDiagonalSquares(): number | Return the sum of squares of diagonal entries | |
| sumSkewSquares(): number | Sum of squared differences between symmetric pairs (symmetric pairs have indices (1,3), (2,6), and (5,7).) | |
| sumSquares(): number | Return the sum of squares of all entries | |
| symmetricEigenvalues(leftEigenvectors: Matrix3d, lambda: Vector3d): boolean | Factor thismatrix as a productU * lambda * UTwhereUis an orthogonal matrix andlambda | |
| testPerpendicularUnitRowsAndColumns(): boolean | Test if all rows and columns are unit length and perpendicular to each other. | |
| toJSON(): Matrix3dProps | Return a json object containing the 9 numeric entries as a single array in row major order, | |
| toQuaternion(): Point4d | Create thismatrix to a quaternion. | |
| transpose(result?: Matrix3d): Matrix3d | Return the transpose of thismatrix. | |
| transposeInPlace(): void | Transpose this matrix in place. | |
| create90DegreeRotationAroundAxis(axisIndex: number): Matrix3d Static | Create a 90 degree rotation around a principal axis | |
| createCapture(coffs: Float64Array, inverseCoffs?: Float64Array): Matrix3d Static | Create a Matrix3d with caller-supplied coefficients and optional inverse coefficients. | |
| createColumns(vectorU: Vector3d, vectorV: Vector3d, vectorW: Vector3d, result?: Matrix3d): Matrix3d Static | Create a matrix from column vectors. | |
| createColumnsInAxisOrder(axisOrder: AxisOrder, columnA: Vector3d, columnB: Vector3d, columnC: Vector3d, result?: Matrix3d): Matrix3d Static | Create a matrix by distributing vectors to columns in one of 6 orders. | |
| createColumnsXYW(vectorU: Readonly<WritableXAndY>, u: number, vectorV: Readonly<WritableXAndY>, v: number, vectorW: Readonly<WritableXAndY>, w: number, result?: Matrix3d): Matrix3d Static | Create a matrix with each column's x,y parts given XAndYand separate numeric z values. | |
| createDirectionalScale(direction: Vector3d, scale: number, result?: Matrix3d): Matrix3d Static | Create a matrix that scales along a specified direction. | |
| createFlattenAlongVectorToPlane(sweepVector: Vector3d, planeNormal: Vector3d): undefined | Matrix3d Static | Create a matrix which sweeps a vector along sweepVectoruntil it hits the plane through the origin with the | |
| createFromQuaternion(quat: Point4d): Matrix3d Static | Create a matrix from a quaternion. | |
| createIdentity(result?: Matrix3d): Matrix3d Static | Create an identity matrix. | |
| createPartialRotationVectorToVector(vectorA: Vector3d, fraction: number, vectorB: Vector3d, result?: Matrix3d): undefined | Matrix3d Static | Return a matrix that rotates a fraction of the angular sweep from vectorA to vectorB. | |
| createPerpendicularVectorFavorPlaneContainingZ(vectorA: Vector3d, result?: Vector3d): Vector3d Static | Return a vector that is perpendicular to the input vectorA. | |
| createPerpendicularVectorFavorXYPlane(vectorA: Vector3d, result?: Vector3d): Vector3d Static | Return a vector that is perpendicular to the input vectorA. | |
| createRigidFromColumns(vectorA: Vector3d, vectorB: Vector3d, axisOrder: AxisOrder, result?: Matrix3d): undefined | Matrix3d Static | Create a new orthogonal matrix (perpendicular columns, unit length, transpose is inverse). | |
| createRigidFromMatrix3d(source: Matrix3d, axisOrder: AxisOrderAxisOrder.XYZ, result?: Matrix3d): undefined | Matrix3d Static | Create a new orthogonal matrix (perpendicular columns, unit length, transpose is inverse). | |
| createRigidHeadsUp(vectorA: Vector3d, axisOrder: AxisOrderAxisOrder.ZXY, result?: Matrix3d): Matrix3d Static | Construct a rigid matrix (orthogonal matrix with +1 determinant) using vectorA and its 2 perpendicular. | |
| createRigidViewAxesZTowardsEye(x: number, y: number, z: number, result?: Matrix3d): Matrix3d Static | Create a rigid matrix (columns and rows are unit length and pairwise perpendicular) for the given eye coordinate. | |
| createRotationAroundAxisIndex(axisIndex: AxisIndex, angle: Angle, result?: Matrix3d): Matrix3d Static | Returns a rotation of specified angle around one of the main axis (X,Y,Z). | |
| createRotationAroundVector(axis: Vector3d, angle: Angle, result?: Matrix3d): undefined | Matrix3d Static | Return the matrix for rotation of anglearound desiredaxis | |
| createRotationVectorToVector(vectorA: Vector3d, vectorB: Vector3d, result?: Matrix3d): undefined | Matrix3d Static | Returns a matrix that rotates from vectorA to vectorB. | |
| createRows(vectorU: Vector3d, vectorV: Vector3d, vectorW: Vector3d, result?: Matrix3d): Matrix3d Static | Create a matrix from row vectors. | |
| createRowValues(axx: number, axy: number, axz: number, ayx: number, ayy: number, ayz: number, azx: number, azy: number, azz: number, result?: Matrix3d): Matrix3d Static | Returns a Matrix3d populated by numeric values given in row-major order. | |
| createScale(scaleFactorX: number, scaleFactorY: number, scaleFactorZ: number, result?: Matrix3d): Matrix3d Static | Create a matrix with distinct x,y,z diagonal (scale) entries. | |
| createShuffledColumns(vectorU: Vector3d, vectorV: Vector3d, vectorW: Vector3d, axisOrder: AxisOrder, result?: Matrix3d): Matrix3d Static | Create a matrix from column vectors, shuffled into place per axisOrder | |
| createStandardWorldToView(index: StandardViewIndex, invert: booleanfalse, result?: Matrix3d): Matrix3d Static | Create a rotation matrix for one of the 8 standard views. | |
| createUniformScale(scaleFactor: number): Matrix3d Static | Create a matrix with uniform scale factor "s": | |
| createViewedAxes(rightVector: Vector3d, upVector: Vector3d, leftNoneRight: number0, topNoneBottom: number0): undefined | Matrix3d Static | Create a matrix from "as viewed" right and up vectors. | |
| createZero(): Matrix3d Static | Create a matrix with all zeros. | |
| flatIndexOf(row: number, column: number): number Static | Convert a (row,column) index pair to the single index within flattened array of 9 numbers in row-major-order | |
| fromJSON(json?: Matrix3dProps): Matrix3d Static | Return a new Matrix3d constructed from contents of the json value. | |
| xyPlusMatrixTimesXY(origin: Readonly<WritableXAndY>, matrix: Matrix3d, vector: Readonly<WritableXAndY>, result?: Point2d): Point2d Static | Compute origin + matrix * vectorusing only the xy parts of the inputs. | |
| xyzMinusMatrixTimesXYZ(origin: Readonly<WritableXYAndZ>, matrix: Matrix3d, vector: Readonly<WritableXYAndZ>, result?: Point3d): Point3d Static | Compute origin - matrix * vector | |
| xyzPlusMatrixTimesCoordinates(origin: XYZ, matrix: Matrix3d, x: number, y: number, z: number, result?: Point3d): Point3d Static | Compute origin + matrix * vectorwhere the final vector is given as direct x,y,z coordinates | |
| xyzPlusMatrixTimesCoordinatesToFloat64Array(origin: XYZ, matrix: Matrix3d, x: number, y: number, z: number, result?: Float64Array): Float64Array Static | Treat the 3x3 matrix and origin as a 3x4 matrix. | |
| xyzPlusMatrixTimesWeightedCoordinates(origin: XYZ, matrix: Matrix3d, x: number, y: number, z: number, w: number, result?: Point4d): Point4d Static | Treat the 3x3 matrix and origin as upper 3x4 part of a 4x4 matrix, with 0001 as the final row. | |
| xyzPlusMatrixTimesWeightedCoordinatesToFloat64Array(origin: XYZ, matrix: Matrix3d, x: number, y: number, z: number, w: number, result?: Float64Array): Float64Array Static | Treat the 3x3 matrix and origin as upper 3x4 part of a 4x4 matrix, with 0001 as the final row. | |
| xyzPlusMatrixTimesXYZ(origin: XYZ, matrix: Matrix3d, vector: Readonly<WritableXYAndZ>, result?: Point3d): Point3d Static | Compute origin + matrix * vectorusing all xyz parts of the inputs. | |
| xyzPlusMatrixTimesXYZInPlace(origin: XYZ, matrix: Matrix3d, vector: WritableXYAndZ): void Static | Updates vector to be origin + matrix * vectorusing all xyz parts of the inputs. | 
Properties
| Name | Type | Description | |
|---|---|---|---|
| coffs | Float64Array | Matrix contents as a flat array of numbers in row-major order. | |
| hasCachedInverse Accessor ReadOnly | boolean | Test if the stored inverse is present and marked valid | |
| identity Accessor Static ReadOnly | Matrix3d | The identity Matrix3d. | |
| inverseCoffs | undefined | Float64Array | Matrix inverse contents. | |
| inverseState | InverseMatrixState | Indicates if inverse is unknown, available, or known singular | |
| isDiagonal Accessor ReadOnly | boolean | Test if the off diagonal entries are all nearly zero | |
| isIdentity Accessor ReadOnly | boolean | Test if the matrix is (very near to) an identity | |
| isLowerTriangular Accessor ReadOnly | boolean | Test if the above diagonal entries (1,2,5) are all nearly zero | |
| isSignedPermutation Accessor ReadOnly | boolean | Test if thismatrix reorders and/or negates the columns of theidentitymatrix. | |
| isUpperTriangular Accessor ReadOnly | boolean | Test if the below diagonal entries (3,6,7) are all nearly zero | |
| isXY Accessor ReadOnly | boolean | test if all entries in the z row and column are exact 001, i.e. | |
| numComputeCache Static | number | Total number of times a cached inverse was computed. | |
| numUseCache Static | number | Total number of times a cached inverse was used to avoid recompute | |
| useCachedInverse Static | boolean | Control flag for whether this class uses cached inverse of matrices. | 
Defined in
- geometry3d/Matrix3d.ts Line 209
Last Updated: 24 June, 2025
Found something wrong, missing, or unclear on this page? Raise an issue in our repo.